A Common Network Architecture Efficiently Implements a Variety of Sparsity-Based Inference Problems

نویسندگان

  • Adam S. Charles
  • Pierre Garrigues
  • Christopher J. Rozell
چکیده

The sparse coding hypothesis has generated significant interest in the computational and theoretical neuroscience communities, but there remain open questions about the exact quantitative form of the sparsity penalty and the implementation of such a coding rule in neurally plausible architectures. The main contribution of this work is to show that a wide variety of sparsity-based probabilistic inference problems proposed in the signal processing and statistics literatures can be implemented exactly in the common network architecture known as the locally competitive algorithm (LCA). Among the cost functions we examine are approximate l(p) norms (0 ≤ p ≤ 2), modified l(p)-norms, block-l1 norms, and reweighted algorithms. Of particular interest is that we show significantly increased performance in reweighted l1 algorithms by inferring all parameters jointly in a dynamical system rather than using an iterative approach native to digital computational architectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the Boundaries of Gene Regulatory Network Inference

To understand how the components of a complex system like a living cell interact and regulate each other, we need to collect data about how the components respond to system perturbations. Such data can then be used to solve the inverse problem of inferring a network that describes how the pieces influence each other. The work in this thesis concerns modelling of the regulatory system of a cell,...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

An Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems

An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...

متن کامل

Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable Architecture Approach

Through the lens of supply chain management, integrating process planning decisions and scheduling plans becomes an issue of great challenge and importance. Dealing with the problem paves the way to devising operation schedules with minimum makespan; considering the flexible process sequences, it can be viewed as a fundamental tool for achieving the scheme, too. To deal with this integration, t...

متن کامل

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python

We describe a new library named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse linear regression, sparse logistic regression, sparse Poisson regression and sparse square root loss linear regression), combined with efficient active set selection strategies. Besides, the library allows users to choose diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 24 12  شماره 

صفحات  -

تاریخ انتشار 2012